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The spreading and diffusion of two-dimensional vortices subject to weak external
random strain fields is examined. The response to such a field of given angular
frequency depends on the profile of the vortex and can be calculated numerically.
An effective diffusivity can be determined as a function of radius and may be
used to evolve the profile over a long time scale, using a diffusion equation that
is both nonlinear and non-local. This equation, containing an additional smoothing
parameter, is simulated starting with a Gaussian vortex. Fine scale steps in the
vorticity profile develop at the periphery of the vortex and these form a vorticity
staircase. The effective diffusivity is high in the steps where the vorticity gradient is
low: between the steps are barriers characterized by low effective diffusivity and high
vorticity gradient. The steps then merge before the vorticity is finally swept out and
this leaves a vortex with a compact core and a sharp edge. There is also an increase
in the effective diffusion within an encircling surf zone.

In order to understand the properties of the evolution of the Gaussian vortex, an
asymptotic model first proposed by Balmforth, Llewellyn Smith & Young (J. Fluid
Mech., vol. 426, 2001, p. 95) is employed. The model is based on a vorticity distribution
that consists of a compact vortex core surrounded by a skirt of relatively weak
vorticity. Again simulations show the formation of fine scale vorticity steps within
the skirt, followed by merger. The diffusion equation we develop has a tendency to
generate vorticity steps on arbitrarily fine scales; these are limited in our numerical
simulations by smoothing the effective diffusivity over small spatial scales.

1. Introduction

There has been much study of the evolution of passive scalars in fluid flows.
In some cases, chosen either for mathematical convenience or with a certain
application in mind, the fluid flow is taken to be kinematic while in other instances
it is obtained dynamically through full simulation of the Navier—Stokes equations.
Problems involving active scalars, in which the scalar feeds back on the flow field,
are much less well understood. In particular, within two-dimensional fluid flows the
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vorticity becomes a scalar which is subject to mixing by the underlying fluid flow, but
at the same time it specifies the flow. It is then a subtle interaction of fluid stability
and mixing properties that determines the evolution of such systems.

Here the aim is to study this interaction and the subsequent diffusive evolution
in a simple two-dimensional geometry which is broadly relevant to geophysical
applications. Our chosen model is a coherent vortex in an external irrotational
flow field, such as might be generated by the motion of other coherent vortices in
two-dimensional turbulence, or by the motion of boundaries. If a two-dimensional
vortex, for simplicity say a Gaussian vortex, is subjected to a short period of weak
spatially uniform external strain, the effect is to distort the vortex and generate a
spiral structure of vorticity pulled out by the differential rotation of the vortex. This
is a mode with azimuthal wavenumber m =2, and enstrophy, which is inviscidly
conserved, is transferred from the mean to the mode. This process was studied in
detail by Bassom & Gilbert (1998, 1999) who identified a number of distinct regimes.
First is a dynamical feedback (or ‘rebound’) whereby the enstrophy transfers from the
m =2 mode to the mean: the core of the vortex dynamically returns to axisymmetry, so
suppressing the generation of fluctuations and mixing there. Although this behaviour
was noted by Bassom & Gilbert (1998, 1999), it was not until the work of Schecter
et al. (2000) and Balmforth, Llewellyn Smith & Young (2001) that it could be claimed
to be well understood. These latter authors used an asymptotic model to link the
suppression of fluctuations to the existence of a so-called ‘quasi-mode’ in the vortex.
Properties of quasi-modes are a combination of those of continuous spectrum with
others of a normal mode, including an exponential decay rate or Landau pole, first
discussed in the fluid context by Briggs, Daugherty & Levy (1970) and more recently
in general boundary layer flows by Shrira & Sazonov (2001).

Leaving aside the technicalities of quasi-modes, the key point is that there is a
dynamical response of the vortex which has the effect of suppressing mixing in the
core of the vortex. In many ways the core of the vortex has a damped °‘elastic’
response, as we discuss further below, which is a function of the vorticity profile.
However the behaviour of the external strain is itself to modify the profile, and
change the response to future strain. This can be studied in a deterministic context
by applying strain fields, and mapping out the dynamical response and the resulting
modified profiles: papers that discuss this include Balmforth et al. (2001) and Turner
& Gilbert (2007, 2009). In the present work the intention is to determine the effect
of a continuous external forcing, so that the vortex spreads and evolves, changing
its response as it does so. If the external strain is weak, the spreading occurs on a
slow time scale, and the response at any instant is given by a problem which is a
linearization about the profile at that time. If the external forcing is also random,
with a given correlation function, a weakly nonlinear theory can be used to derive a
diffusion equation that governs the spread of the vortex. Since this spreading involves
the response of the vortex to each frequency in the external strain, and each response
depends on the whole profile, the diffusion equation on the long time scale is both
nonlinear and non-local. Although it cannot be written down in an explicit form, it
may be simulated numerically and its properties explored.

In the coming section we investigate the particular case of a Gaussian vortex
placed in a random strain field: our computations demonstrate the suppressed
diffusion in the core and the enhanced mixing further out in the tails, together
with a number of other phenomena including the formation of vorticity staircases,
with steps and transport barriers. To confirm these findings, and to obtain more detail
and greater understanding of our results, we then consider the system of equations in
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Balmforth et al. (2001). These equations model the interaction of a normal mode
riding on a compact central vortex, with a surrounding ‘skirt’ of weak vorticity. This
is a good qualitative model of a Gaussian vortex and we find similar phenomena as
for the Gaussian case.

A number of other studies have focused on the interaction of the dynamical
effects of vorticity and the mixing properties of the flow within a deterministic
setting. Haynes, Poet & Shuckburgh (2007) compare the transport in a kinematically
prescribed flow modelling a meandering jet, with a similar flow on a beta plane under
topographic forcing. In both cases the presence of barriers inhibits mixing: however
in the dynamical case there are significant changes in the flow field when a barrier is
broken and vorticity is homogenized in a large area of the flow. Perhaps the closest
studies to the present paper are del Castillo Negrete (2000a,b): these papers consider
a variety of models in which advected scalars change the parameters of the flow, or
a mapping such as the standard map (see also Boffetta et al. 2003). In the model
closest to ours, the ‘single wave model’, vorticity is advected by a shear flow whose
profile is chosen so that it possesses a neutral large-scale mode. The mode amplitude
interacts with the vorticity distribution to give a simplified system similar to that
derived by Balmforth et al. (2001). The presence of the neutral mode means that the
flow tends to develop a critical layer containing cat’s eyes and the mixing of vorticity
within these eyes can have a strong effect on the flow field: for example introducing
weak vorticity into the eyes can lead to resonant oscillations and enhanced mixing
(del Castillo Negrete 2000a).

The process of vorticity mixing in the presence of a neutral mode (del Castillo
Negrete 2000a,b) is very relevant to our study of a Gaussian vortex, even though this
profile possesses no neutral modes (Briggs et al. 1970). The reason is that, in a sense
we will explain, the Gaussian vortex ‘nearly’ has a neutral mode. This is the approach
taken in Balmforth et al. (2001), who break a Gaussian vortex into a compact coherent
core, for example a top-hat or Rankine vortex, surrounded by a tail or skirt of weak
vorticity. A Rankine vortex supports a neutral m =2 normal mode (or Kelvin wave).
This is undamped, but if a weak vorticity gradient is introduced at the radius where
fluid particles corotate with the wave, i.e. in the critical layer, Balmforth et al. (2001)
show how this can stabilize or destabilize the wave, depending on the sign of the
gradient. In a similar way, for qualitative purposes a Gaussian vortex can be treated
as having a core that supports a neutral mode, but which is damped by vorticity
at the outer edges of the vortex: this combination forms a quasi-mode in the linear
regime giving the damped elastic behaviour mentioned above. If pushed hard enough
cat’s eyes are created in the critical layer, with a profile modified sufficiently for a true
neutral normal mode to exist on the vortex (Balmforth et al. 2001; Turner & Gilbert
2007).

These earlier studies have focused on the initial value problem, with linear behaviour
such as quasi-mode damping, and the nonlinear generation of cat’s eyes beyond some
amplitude threshold. Our study here is distinguished by using a weak random external
forcing so that the vortex is always in a linear regime, and by using a weakly nonlinear
expansion to set up a diffusion equation for the vorticity profile on a long time scale.
A related study was presented by two of the present authors a decade ago (Bassom
& Gilbert 1999). There we again derived a weakly nonlinear system for the evolution
of the mean profile, and proceded to simulate it with a realization of the random
forcing included explicitly. Although some results were obtained, for example the
demonstration that the suppression of vorticity arising from the quasi-mode has the
effect of decreasing the spread of the vortex compared to a passive scalar, it was
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not possible to follow the system very far in time. The present study, which can be
considered a more advanced version of Bassom & Gilbert (1999), as the random
component is ensemble averaged at the outset, will highlight some of the limitations
of that earlier work, in particular our present finding that the interaction of dynamical
and diffusive properties of vorticity in these systems leads to small-scale instability
and the generation of fine scale steps in the vorticity profiles.

The remainder of the paper is structured as follows. In § 2 we consider the case of
the Gaussian vortex in a random strain field: a diffusion equation is derived for the
evolution of the profile on a long time scale and numerical experiments are performed.
We attempt to throw more light on the processes involved by examining the model
of Balmforth et al. (2001) in §3. In these sections theory is developed, followed by
numerical simulations, but technical details are relegated to three appendices. Finally,
§4 offers some concluding discussion.

2. Gaussian vortex in random strain
2.1. Analytical development
We use the equations for inviscid planar flow written in the form

8;(,() = J(W7 (,()), w = —V2W» (21)
with the velocity field u = (r~'9y, —9,) in plane polar coordinates (r, #) and
rJ(a,b) = (9,a)(3sb) — (3pa)(9,b).

We begin with an axisymmetric vortex, and adopt non-dimensional units based on
its width and circulation. For example, our initial condition of a Gaussian vortex is

w=o=@4n) e/, (2.2)

where @ is the mean vorticity profile, averaged over 6. With a general vorticity profile
is an associated mean stream function ¥, angular velocity & and vorticity gradient r8
given by
©=—r"19,(ro,¥), a=—r"'9v, B=rlom. (2.3)
We now impose a weak, external strain field on the vortex by requiring that

U(r, 0,1) ~ (=2m) ogr + eq(t)r"e™ +c.c. (r — ), (2.4)

where c.c. denotes the complex conjugate. This is the monopolar field from the vortex
plus the et components of a general multipolar field of complex amplitude eq(t)
with 0 < ¢ < 1. The resulting flow is irrotational outside the vortex, at radii where w is
effectively zero. We will focus on the case m =2 numerically, that of spatially uniform
external strain, but leave the general value of m in the mathematical development for
clarity. (We note that m =1 gives a translation, while we expect mixing properties for
modes m > 2 to be similar to m =2.)

The time dependence of the statistically stationary external flow is given by the
correlation function of ¢(f) and we shall consider two cases. The first of these is a
flow that is delta correlated in time so that

{gt)g" (1)) = 8(t =), w(p) =1 (2.3

Here the brackets (-) denote an ensemble average and w(p) is a corresponding weight
function which we note here for reference and which emerges in computing the
feedback on the mean profile in Appendix A. Physically, this function w(p) describes
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the contribution to frequency p from the random function ¢(¢). Our second example
has a peak at a rotational frequency » and an exponential fall-off

a2

(p —mb)? +a?’

so that the weight is largest around frequencies p =mb. The delta correlated case is
recaptured in the limit ¢ — oo for any fixed b.

Now consider the evolution of the flow and vorticity field, for example starting from
the Gaussian initial condition (2.2). As time proceeds so the external flow generates
fluctuations, i.e. components proportional to et™? in the vorticity field. For small &
these are weak and governed by the equation for vorticity, linearized about the mean
profile w. There is then a feedback, of magnitude &2, from the quadratic terms, which
leads to a slow drift of the mean profile w, on a long time scale.

To obtain the equation for this drift, we begin by taking ¢ <1 in the external
strain (2.4), and introduce a long time scale T = ¢&’t together with a weakly nonlinear
expansion

<q(t)q*(t/)> — %e—u\z—r’l e—imb(l—r’)’ U)(p) — (26)

w(r,t,7) =o(r, 1) +ed(r, t,1)e™ +cc.+ -, (2.7)
U t, 1) =V 1) +ev(nt, t)e™ +cc.4+- . (2.8)

Dropping the hats yields equations for the fluctuating vorticity and stream function
ow+imaw +imBy =0, —w= (8,2 +r719, —r7? 2) . (2.9)

These evolve in the angular velocity field and background vorticity gradient given in
(2.3) in terms of the mean profile. On the longer, T time scale, the mean profile obeys

0w+ r19.(rF)=0, F=2mr 'Im{oy"), (2.10)

where the angled brackets denote an ensemble average over realizations of the random
forcing, and also an average over evolution on the fast ¢ time scale.

Our aim is to solve the fluctuating problem and then derive the feedback on the
mean profile, in a form suitable for numerical time stepping. We use a Laplace
transform approach and define

_ o 1 s
fip = [ aerso, s =5 [ apeiip. 1)

Here I" is a contour taken from +o0 to —oo above all singularities of the function
f(p). From (2.9), in Laplace transform space we have to solve

s ) =

~ __ 2 —1 -2_2 _
w:—(ar-i-r o, —r m)l/f_ip/m—ot(r)w (2.12)
for ¥(r, p) with
V(r, p)~r"q(p) as r— oo (2.13)
and 17/(0, p)=0. We formally write the solution as
¥(r, p) = M(r, p)g(p). @(r, p) = N(r, p)q(p). (2.14)

As discussed by Briggs et al. 1970, there is a singularity whenever the external
frequency p =ma(r) for some resonant radius r and the behaviour near such points
is relevant to us.
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Suppose we consider a fixed value p=ma(s) for some s, and vary r; then the
solution to the above differential system has the following behaviour as r — s. The
leading order singular term for the vorticity is a simple pole

N(r, p) = —C(p)u(s)(r —s5)~ 4+ (2.15)
and for the stream function is
M(r, p) = C(p)[1 + pu(s)(r —s)log(s —r) + -1+ D(p)(r —s)+---].  (2.16)
for r < s, while
M(r, p) = C(p)[1 + u(s)(r —s)(log(r —s) +ix)+ -1+ D(p)l(r —s)+---1 (2.17)

for r > 5. The coefficients C and D depend on p and are fixed by the boundary
conditions at r =0 and infinity. The quantity u(s)= B(s)/0,c(s) while the angle x is a
phase shift which is chosen to select the correct branch of the logarithmic singularity
in ¥. We have in mind letting the point p approach the real axis from above which
means that for d;a(s) > 0 the point s also approaches from above and the phase shift
is x =m. On the other hand, if d,a(s) <0 (as in the Gaussian vortex), s approaches
from below and x= —m.

This gives a formal solution to the linear problem for the fluctations driven by any
external frequency p. It then remains to calculate the feedback on the mean profile by
calculating the average (wv ™) in (2.10). We relegate this calculation to Appendix A
and give only the final result here, which is a diffusion equation for @(r, 7),

0w+ r19.(rF)=0, F(r)=—«(r)dm, (2.18)
with a radial vorticity flux F and an effective diffusivity taking the form
k.(r) = m*r*|C(p)*w(p), p =ma(r). (2.19)

In (2.18) and (2.19) as used for simulations, « and «. are not quite the same: «
is a smoothed version of «. in a sense that we will clarify shortly. We note that
the quantities «, «, k«, F and C all also change with t as the underlying profile @
evolves but we suppress this dependence for brevity: only the specification of the
random forcing w(p) is independent of 7. Instead it is more useful to emphasize the
dependence of quantities on radius r or frequency p as appropriate.

The content of (2.19) is worthy of some comment. At a given radius r, there is a
crucial link to a frequency p via the angular velocity «(r): it is at this frequency that
the external forcing is resonant with the motion of fluid elements, accounting for the
weighting factor w(p). The quantity C(p) controls the transport and is the strength
in (2.15) of the singularity at the resonant radius r of the linear solution driven by
external forcing of frequency p. Computing C(p) has to be done numerically for
each radius r and depends on the whole vorticity profile, through integration of the
ordinary differential equation (2.12) involving the angular velocity @ and vorticity
gradient rg, linked in turn to @. The effective diffusivity «.(r) is always non-negative
and the resulting diffusion equation is nonlinear and non-local, inheriting these
properties from the Euler equation. These features make further analytical progress
difficult, at least in any general case, but can be dealt with numerically.

We also mention the case of a passive scalar field o. If we take a flow field with
a fixed angular velocity «(r) and simply add on the non-axisymmetric component of
the random strain field (2.4) to obtain a prescribed purely kinematic flow field, the
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Ficure 1. Effective diffusivity (a) «(r) plotted for the Gaussian vortex at T =0 (with the scalar
diffusivity shown dotted), and (b) x(y) plotted for the model of Balmforth et al. (2001) at T =0
(see §3).

resulting radial scalar flux is F = — ko (r)9,0 With

Kscalar(r) = m2r72r2’"w(p), p= moz(r). (220)
This is in agreement with results given in Bassom & Gilbert (1999), up to
normalization. For large r, C(p) >~ r™ and so this is also the large-r form of
the effective diffusivity (2.19).

Notice that in the delta correlated case w(p)=1, the scalar effective diffusivity
(2.20) has no dependence whatsoever on the axisymmetric component of the flow
field. This is a result of the limit of delta correlation: the external flow changes so
rapidly that the advection by the axisymmetric flow component is irrelevant. This is
not the case for the fully dynamical vorticity problem: even in the delta correlated
case, the profile enters into the quantity C(p) in (2.19). In some loose sense, the
behaviour of the vortex introduces a ‘memory’ into the problem: if a blob of passive
scalar is moved to a different radius there is no dynamical response, whereas for a
blob of vorticity the global flow field continues to evolve on its own time scale: this is
the rebound phenomenon of Bassom & Gilbert (1999), discussed in the introduction
and now understood as quasi-mode damping.

Figure 1(a) shows the effective diffusivity «(r) in (2.19) for the Gaussian profile,
at T =0. (Figure 1b shows the analogous function (3.16) for the model of Balmforth
et al. 2001 discussed later in §3). This has a number of interesting features. The
corresponding scalar diffusivity (2.20) is shown dotted, and the two coincide for large
r. Near the origin, say for r < 3, the vorticity diffusivity is much smaller than the scalar
diffusivity: this is a consequence of the elastic behaviour of the vortex core discussed
in the introduction. An external frequency that is in the range to excite fluctuations
in the core of the vortex will be met with a wave-like response and no net transport.
However further out, at r ~ 4, k(r) is rather larger than the scalar diffusivity: here
the external forcing meets a large response from the vortex, essentially exciting the
quasi-mode and giving strong mixing in the critical layer.

2.2. Numerical results

We constructed a code to follow the vorticity on the long 7 time scale. Starting with
the profile (2.2) the code integrates the diffusion equation defined by (2.18) and (2.19);
a is computed from (2.3), C(p) is obtained from (2.12-2.17) and we used the delta
correlated case w(p)=1 in all our computations (other choices give similar results).
The details of the numerical method are discussed in Appendix B.



56 M. R. Turner, A. P. Bassom and A. D. Gilbert

If the equations are solved with no smoothing at all (so that x =«.), it turns out
that the results are sensitive to the radial grid used, from r =0 to r = R: the finer the
grid, the closer the steps that form initially. Therefore, to obtain numerical results
that have a clear mathematical setting, i.e. independent of resolution, we impose a
cap on the values of the diffusivity and smooth the diffusivity over a small length
scale. Specifically, once we have computed «.(r) from (2.19), we replace it by

K = Kgcalar G8 FS(K* /Kscalar)- (221)

Here we first normalize « using the scalar diffusivity, which grows with a power law
dependence in (2.20). The first operation then caps this at a level §7!,

Fs(s) = 8 tanh(sd), (2.22)
and the second smooths it over a scale of order §,
AS
(Gs f)(s) =n~11257! / e = £ (s) ds. (2.23)
—AS

This smoothing is taken over A =3 standard deviations of the Gaussian, and is done
numerically from r = A§ to r = R — A§: this covers all the radii at which fine structure
develops, and structure in the diffusivity and vorticity profile is eliminated at scales
smaller than §. We discuss this smoothing further below.

The results of runs for the Gaussian initial condition are shown in figures 2 and 3:
the panels of figures 2 and 3 are distinguished by different values of the smoothing
parameter §. Figure 2(a) has the largest smoothing parameter, § =0.05: reading up
the curves shows the evolution of the profile. The Gaussian tail breaks up into
a single step, which then disappears to leave a sharp-edged vortex. In figure 2(d)
the evolution of the logarithm of the diffusivity log x(r) is shown: it may be seen that
a double peak emerges; the first peak, around r =3, corresponds to the flat part of
the step and the second peak lies just beyond the edge of the sharpening vortex. The
two peaks then merge and move inwards, in concert with the sharpening edge of the
vortex. Another view of our results with this choice of § is shown in figure 3(a,d).
Figure 3(a) depicts the evolution of the vorticity gradient 9, w(r, ) and figure 3(d)
depicts the effective diffusivity «(r,7) in space—time or ‘butterfly’ diagrams.
Figure 3(a) shows the initial formation of a single vorticity step (with also some
outgoing ripples), followed by its sudden evaporation to leave a sharp-edged
vortex. The behaviour of the vorticity gradient is linked to the effective diffusivity
(figure 3d).

The evolution we see in figures 2(a,d) and 3(a,d) is the result of a runaway
process in which the effective diffusivity rapidly increases at certain radii. Initially the
behaviour of the vortex is roughly that of a damped elastic mode, the quasi-mode.
The damping arises from the tail of the Gaussian vortex and limits the response to
the external random strain, giving the effective diffusivity plotted in figure 1(a), with a
peak around r ~ 4. This peak has the effect of flattening the profile around r ~ 4 by
diffusion, leading to less damping of the quasi-mode and so further enhancement of
the effective diffusivity (the peak also moves inwards because of the modified profile).
This process rapidly diffuses the vorticity out from the edge of the vortex, to leave
a sharp-edged vortex and high effective diffusivity outside. We can characterize this
final state as a coherent vortex with a very clear edge, surrounded by what is often
described as a ‘surf zone’ of enhanced diffusion (McIntyre & Palmer 1984).

As we reduce 8, increasingly fine scale structure appears in our runs. In figure 2(b, ¢)
we see a more complex picture emerging, in which the profile develops fine scale
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FIGURE 2. Evolution of a Gaussian vortex with smoothing (a,d) § =0.05, (b,e) § =0.02 and
(¢,f) §=0.015. The curves show a sequence of vorticity profiles @ (a—c) and corresponding
effective diffusivities logx (d—f), plotted against r. In each panel the curves are separated by
additive constants and given in steps of (a,d) 0.02 and (b,c,e,f) 0.002 of 7, reading up the
curves.

steps initially (with outgoing ripples), followed by merger. Where the profile is flat
the effective diffusivity takes very large values, and where the profile shows sharp
gradients, the diffusivity is suppressed. We can think of the vertical regions as barriers,
where reduced diffusion inhibits transport, surrounding well-mixed regions. We note
that there appears to be a limited range of radii where steps form initially, for the
smaller values of § used. The reason for this became apparent in studying the model of
Balmforth et al. (2001), and we give numerical results for this in the next section, with
some analytical justification in Appendix C. In this model, with § =0, there is a range
of radii for which a fine scale instability can occur: a weak small-scale perturbation,
wavenumber k>>1, on the vorticity profile has a growth rate proportional to k2.
This effect, which is natural given the flattening process described above, gives results
sensitive to grid scale, no matter what the numerical scheme. The same effect appears
to occur for the evolution of the Gaussian vortex and is the reason for the introduction
of the smoothing parameter 4.
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FIGURE 3. Space-time diagram of the evolution of the vorticity gradient —d,@(r, t) (a—c) and
effective diffusivity «(r, ) (d—f), plotted in grey scales in the (z,r) plane for (a,d) § =0.05,
0<71<0.2 (he) §=0.02, 0<t<0.02 and (c,f) § =0.015, 0< t <0.02. The grey scale coding
is capped at levels —d,@=0.05, « =10, corresponding to black; zero is white. The vertical
range is 0 <<r <5 and t runs horizontally.

We stress that our results are dependent on the choice of the smoothing
parameter, and this requires some discussion and interpretation. Certainly introducing
a smoothing effect in this way is not ideal, and the instabilities observed strictly show
that the multiple scale framework is breaking down, the separation of time scales
being lost. However smoothing the distribution of « is physically natural. The point
is that in our weakly nonlinear framework there is no mechanism to saturate the
response to an external frequency if the vortex profile develops a neutral normal
mode. However in the original unscaled problem nonlinearity will step in and limit
the excursions of fluid particles. In fact, if a vortex is subjected to a single frequency
p for a long time, there follows the development of cat’s eyes of a width ¢!/ in
the vortex profile. This is the width of the resonance, limited by the local gradient
of angular velocity (which incidentally does not generate the same fine scales as the
vorticity profile). It is thus natural to limit ¥ to be smooth over scales § = O(g!/?).
Similarly the diffusivity is dimensionally #% = O(e*?) for motion across a cat’s eye
of width & = 0(¢!/?) with velocity % = O(e): however this is on the short ¢ time scale
and corresponds to a limit x = O(¢~'/?) on the long t time scale.

In short it is natural to introduce a parameter 8§ of order ¢!/> and to use it to
smooth the effective diffusivity over scales § and cap at values §~!. We normalize by
the scalar diffusivity in order not to cap the algebraic growth of « for large r, which
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is reasonable as this is the true effect of random strain, with its growing velocity
field as r — o0. As we do not have any more systematic way to estimate § and its
dependence on radius and time, we have taken it to be constant for each run and
explored the consequences as it is reduced. Finally we note that while smoothing «
over a scale § is crucial as it limits the scale of the formation of steps, capping the
value of « is less important. A number of ways of doing this (including not doing
so) were explored, and gave results that are very similar: the choice only changes just
how flat the vorticity steps are, not their formation nor their merger and the stripping
at the vortex edge.

3. Random strain in the model of Balmforth et al. (2001)
3.1. Analytical development

For the Gaussian vortex we observed a clear range of radii where the effective
diffusivity is enhanced, and where steps in the profile emerge and merge. The core
of the vortex (for example 0 <r <2) is relatively unscathed. This suggests exploiting
an asymptotic framework in which a simplified model is used for the vortex core.
Fortunately such a framework exists and is derived in Balmforth et al. (2001). The
starting point is a compact vortex, for example a Rankine vortex, with vorticity
strictly zero at some radius, the edge of the vortex. The vortex is assumed to support
a neutral, normal mode whose critical layer, where fluid particles corotate with the
mode, lies at a radius r. which is outside the vortex. The model consists of an ordinary
differential equation (ODE) for the complex amplitude @(¢) of the normal mode and
a partial differential equation (PDE) for the evolution of weak vorticity ¢ in the thin
critical layer about the radius r.. This model captures at a qualitative level many
phenomena that can occur in a Gaussian vortex subject to external strain fields:
the ODE models the et"? wave-like distortions of the central core, while the PDE
captures the formation of cat’s eyes and mixing of vorticity on the periphery. The two
are coupled: the normal mode creates mixing in the layer, and mixing of vorticity can
feed back to stabilize or destabilize the normal mode.
The governing equations for the forced model are

3¢ +y3¢ + [3,(y +¢)]osp =0, (3.1
10, = eq(t) + ?/ dy]! e o, (3.2)
@(0,1) = p(t)e™ +c.c. (3.3)

We refer the reader to Balmforth et al. (2001) for a derivation and detailed description
and only note here that in (3.1) y is a scaled inwardly pointing radial coordinate with
y =0 corresponding to the centre of the critical layer. The vorticity in the layer is
y+¢(y,0,1), and is transported in the angular velocity of the vortex, the ydy¢ term,
and because of radial motion from the normal mode via the term involving the flow
d9@. This flow is simply linked by (3.3) to the amplitude ¢(¢) of the normal mode,
governed by the ODE (3.2). In this equation the weak external random flow g¢(¢) is
present, plus a feedback from the vorticity in the critical layer involving a principal
value integral over y.

We exploit the limit & — 0 by introducing a long time scale T = &%, and a weakly
nonlinear expansion

cy,t,7)=C0(y, T) + e¢(y, 1, 7)™ +c.c.4- - . (3.4)
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Replacing ¢ by €@, on the fast ¢ time scale we have the system

8, +imyZ 4+ (1 + 8,2)im@ = 0, (3.5)
0,0 =q + @/ dy?Z. (3.6)

This gives advection of vorticity fluctuations on a mean, background distribution
y + ¢ that depends on y but does not vary on the short time scale . On the longer ©
time scale we have a conservation equation for the mean profile

3.C+0,F =0, F=2mIm({p"). (3.7)

Here the brackets denote both an average over ¢ as well as an ensemble average over
the distribution of random flow amplitudes ¢(¢). From now on we drop the hats from
fluctuating quantities; we shall also not stress the dependence on 7 of the various
quantities in the problem.

Our plan is to solve the fluctuating problem (3.5) and (3.6) for ¢ and ¢ with any
background mean profile ¢, and then isolate the flux F in (3.7) to give a diffusion
equation for this profile on the long time scale. Using (2.11), (3.5) and (3.6) in Laplace
transform space become

(—ip + imy)Z + im(1 + 8,2)p = 0, (3.8)
p¢=a+9’/ dy <. (3.9)
and are solved straightforwardly (with zero initial conditions) so that
c(p)=K(y, pM(p)q(p), @(p) = M(p)q(p), (3.10)
where
140,z * 1
K(y.p)= L2080 ) — / dyK(y.p). M(p)=—  (311)
p/m—y o p—L(p)

Here the principal value integral for L(p) refers to the limit y — +o0, but in addition
we need to note that the contour I sits above the real axis, and when brought down
meets a pole at p =my from the definition of K(y, p). We can extract the integral
over the singular component (1 4 9,¢(p/m))/(p/m — y) and evaluate this exactly for
p above the real axis. There is then no obstruction to bringing the contour I" down
to the real axis, in other words making p real. Writing L = L, 4 iL; in terms of real
and imaginary parts we have

ayE(y) - BVE(p/m)

— . Li(p) = —n(1 48, (p/m)). (3.12)
y—p/m

Lin=-2[ &

This solution may seem rather formal but given a profile £(y), L and M are easily
obtained numerically for any real value of p. Note that if the vorticity gradient is a
constant, ¢(y)=0, then L(p)= —in. This gives a simple pole in

M(p)=(p+in)”" (3.13)

at p= —in which is used in the formula (3.16) below. This pole corresponds to the
quasi-mode damping rate e ”" =e™™ (as in Balmforth et al. 2001). For more general
profiles a computation of M(p) will determine the damping rate for quasi-modes (e.g.
Hall, Bassom & Gilbert 2003).
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Given this solution it is now just a question of computing the average (") that
provides the flux F in (3.7). This calculation is described in Appendix A: the result
is that the vorticity w =y + ¢(y, 7) in the layer is governed by the diffusion equation
for ¢,

&+, F =0, F(y)=—k(y3d,(y+2), (3.14)
with diffusivity

k(y) = m* I M(p)Pw(p), p=my. (3.15)
Here we have the weight function w(p) from (2.5) or (2.6) and the quantity M(p)
which gives the response of the vortex to frequency p and is determined by an
integration over the vorticity distribution in the layer (see (3.11)): as a result the
diffusivity depends nonlinearly and non-locally on the profile y + ¢(y). At T =0 with
a uniform gradient initially, w = y, we have

k() = m(m’y* + )" w(p), (3.16)

and this is shown in figure 1(b) (for w(p)=1). This is analogous to the peak in the
curve in figure 1(a), confirming that the framework in Balmforth et al. (2001) should
model the transport in the tail of the Gaussian vortex. As in the Gaussian case, we
cap and smooth «. using a parameter § to obtain «, with

Kk = Gy Fj(k.). (3.17)

We again have in mind linking § to the quantity ¢!/2, where ¢ <1 is the strength of
the forcing. (Note that in this case we have not normalized by a scalar diffusivity as
there is no power law growth with increasing y.)

3.2. Numerical results

Figures 4 and 5 show numerical results for simulations of the diffusion equation (3.14)
and (3.15) with M(p) computed as detailed in (3.11) and (3.12). Figure 4 (a, b) shows
vorticity profiles analogous to those of @ in the left panels of figure 2, bearing in mind
that y increases radially inwards. The corresponding effective diffusivities are shown
in the right panels of the two figures. There are strong similarities between the full
evolution of the Gaussian initial condition and the simplified model of Balmforth et
al. (2001), confirming the usefulness of the model in capturing many phenomena at
a qualitative level. The model system shows the development of a vorticity staircase.
The flattened regions are characterized by strongly enhanced diffusivity: in between
there are transport barriers, where the reduced diffusivity allows high gradients to
persist.

The butterfly diagrams in figure 5 are analogous to those in figure 3 for the
Gaussian case. Again we see many similarities: steps are formed and merge, and
there are also ripples at the edge, moving towards the origin y=0, particularly
visible in 5(c, d), and seen in the Gaussian case in figure 3. Of course there are
also differences, and we stress that the model of Balmforth et al. (2001) is not an
asymptotic approximation to a Gaussian vortex so comparisons are only qualitative.
The key difference appears to be that in the model the critical layer is embedded in an
infinitely wide vorticity gradient, on the appropriate small scale y, as is clear in figure 4.
The gradient traps the vorticity staircase, while the effective diffusivity «(y) drops away
on either side (figure 1b). This matches the behaviour for the Gaussian vortex around
r =4, but there the random strain field takes over for increasing radii and the effective
diffusivity increases, as seen in figure 1(a). This tends to make the Gaussian picture
asymmetrical, and allows vorticity to be stripped to infinity, not possible in the model.
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FiGure 4. Evolution in the model of Balmforth et al. (2001) with smoothing (a,c) § =0.05 and
(b,d) §=0.01. The curves show a sequence of vorticity profiles @=y + ¢ (a, b) and effective
diffusivities logk (c, d), plotted against y. In each panel the curves are separated by additive
constants and given for T =0, 0.1, 0.2, etc., reading up the curves.

(Note that there is some symmetry breaking in the numerical runs in figure 5(d, e):
the mathematical problem is strictly symmetric in y, but instabilities soon break this,
whether seeded by rounding or truncation error, or by initializing ¢ with weak noise,
as we do.)

We observe from figure 5 that as the smoothing parameter § is reduced we obtain
finer scales in the problem, and a more rapid onset of the growth of steps, over
a very clearly defined range of y values. To see this clearly figure 6 shows a run
with § =0.005, the smallest value used, with evolution over a short time interval in
figure 6(a) and over a longer interval in figure 6(b). Over the short time we see a
rapid growth of fine scale structure and waves (limited by the value of §); these
form finely spaced steps which then show a merger process, over both short times in
figure 6(a) and longer times in figure 6(b). The initial development at first suggests
a ‘negative diffusion’ type instability with a growth rate increasing with wavenumber
k of the initial fluctuations, perhaps as O(k?). For example, this is reminiscent of the
Cahn—Hilliard equation where diffusion with a negative diffusivity is controlled on the
smallest scales by a fourth derivative: fine structure develops initially and then scales
increase as phase separation occurs and domains merge. However in our simulations
k(y) =0 at all times, and also «(r) >0 in the Gaussian case. The initial development
of fine structure arises through the term (d,x)d,(y + ¢), from expanding the diffusive
term 9,(kd,(y + ¢)) in (3.14) as we now explain.

Suppose we start a linear vorticity profile w=y, and add on a weak fine scale
vorticity distribution ¢(y)=usinky with u <1 and k> 1. Now the corresponding «
will also be perturbed from (3.16) with a component of magnitude  and wavenumber
k. By calculating this it can be shown that at a point y the original disturbance will
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FIGURE 5. Space-time diagram of the evolution of the perturbation vorticity gradient 9,¢(y, 7)
(a—e) and the effective diffusivity «(y, 7) (f—), plotted in grey scales in the (z, y) plane for (a,f)
§=0.2, (b,g) §=0.1, (c,h) §=0.05, (d,i) §=0.02 and (e,j) § =0.01. The grey scale coding
is capped at the level of 4, corresponding to black; zero is white. The ranges are —2 <<y <2
(vertical) and in the horizontal, (a,f) 0<t <4 and (b,g) 0<7t <2 and (c—e, h—j) 0<t<1.
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FIGURE 6. As in figure 5 for § =0.005 and (a, ¢) short times 0<7 <0.025 and (b,d)
moderate times 0 <t <0.25.

have a local growth rate of
y(y) = KPm*(m?y? + 1) Pw(my)(n? —m?y?), (3.18)

and so the disturbance grows with a growth rate proportional to k? (similar to a
‘negative diffusivity’ instability but without « changing sign) in the band |y|<m®/m.
The range of y for which modes are predicted to grow is consistent with the emergence
of fine scales in figures 5 and 6; for example the latter figure shows an absence of
fine scales outside the range |y| < 1.4, to be compared with the prediction |y| <m/2 ~
1.57. This band is perhaps a little narrower than the range indicated from theory,
presumably because of nonlinear effects that will occur most quickly at the centre,
but have a wider influence.

This calculation is detailed in Appendix C. We believe this also gives an
interpretation for the formation of ever finer scales in the Gaussian vortex as § — 0,
and think it is likely that there is a range of radii at which this can occur. It would
be interesting to determine the range, but we do not know how to do this.

4. Discussion

We have investigated the evolution of a coherent two-dimensional vortex subjected
to weak external random strain, both starting with a Gaussian vortex and using the
asymptotic model (Balmforth et al. 2001) of compact vortex core and weak vorticity
skirt. Averaging over the external random strain allowed us to write down a diffusion
equation for the mean vorticity profile. The effective diffusivity is linked explicitly to
the stability properties of the profile: although the link is nonlinear and non-local, it
can be calculated to give the diffusivity as a function of radius for any given vorticity
profile.

We then time-stepped this diffusion equation to attempt to understand the coupling
between mixing of vorticity and the vortex response for axisymmetric flow starting
with a Gaussian vortex and for the model of Balmforth et al. (2001). We have found
that the dynamical response gives similar features in both cases with the generation of
fine scale steps forming a vorticity staircase. In the flat regions of the steps the effective
diffusivity is large, while in between small values of the effective diffusivity allow high
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FIGURE 7. Schematic of process of quasi-mode damping suppressing mixing in the vertical
part of a vorticity step, as described in the text.

gradients of vorticity to persist and form transport barriers. Merger processes tend
to reduce the number of steps, and in the Gaussian case we find that vorticity is
stripped to infinity, leaving a sharp-edged vortex. Surrounding this is a region where
the effective diffusivity is large.

Much of what we see in the Gaussian case is reproduced in the model of Balmforth
et al. (2001), which allowed us both to pursue higher numerical resolutions, and
to understand the initial development of fine scales. In addition we can give a
heuristic description of how the sharp vertical parts of steps are maintained in the
profile, shown in figure 7 (see Hall et al. 2003). It amounts to the fact that there is
damping of quasi-modes (corresponding to a normal mode on the vortex core) in
the presence of a vorticity gradient at the appropriate critical radius. In figure 7(a)
there is external rotating strain, frequency p, acting on a vortex core surrounded by a
corotating vertical vorticity step at r with p =ma(r). The external strain distorts the
step into an ellipse in (b), creating the +/— vorticity anomaly and flow shown. This
distorts the vortex core giving the secondary vorticity anomaly and flow indicated
in (c), which has the effect of countering the original external strain and restoring
the step to circular form. Thus an external frequency that is tuned to mix vorticity
in the vertical part of the step is damped and mixing suppressed. For a frequency
that corresponds to a flat part of a step and a low gradient at the critical radius, no
vorticity anomaly is created and so there is no damping mechanism.

The development of vorticity staircases and inhomogeneous mixing is mirrored in
observations and simulations of geophysical flows. For example, simulations of Norton
(1994) and Waugh & Plumb (1994) of stratospheric polar vortex dynamics indicate
a coherent vortex core, undergoing significant distortions (greater than in our study),
surrounded by a ‘surf zone’ of breaking Rossby waves (Mclntyre & Palmer 1984).
Such sharp-edged vortices can also be generated by the process of vortex stripping (e.g.
Mariotti, Legras & Dritschel 1994), where the flow generates a hyperbolic separatrix
at the edge of the vortex, which erodes vorticity on a very rapid time scale. The
stripping we see, which leaves a sharp edge in simulations of the Gaussian vortex, is
in some ways a milder process, as it results from the accumulation of weak random
external strain over a long time scale: nonetheless it too results from the algebraic
growth of the random strain field with radius. Steps in potential vorticity fields are
also seen in atmospheric data; see for example Dritschel & Mclntyre (2008), who
review observations, discuss physical mechanisms and present numerical simulations.
Here the vorticity gradients in our models are replaced by a background vorticity
gradient or B-effect, which governs jet width scaling in geophysical problems. Banded
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structures are seen in giant gaseous planets, most notably Jupiter and Saturn, and
emerge in simulations of randomly forced spherical shallow water models and in
convective deep models (Rotvig & Jones 2006; Heimpel & Aurnou 2007; Scott &
Polvani 2007). It would be interesting to extend the present study to derive a diffusion
equation for fluid motions on a sphere in the case of a two-dimensional fluid or a
shallow water system, building on the weakly nonlinear study of Garaud (2001), who
followed the effects of shear instability in flows relevant to the solar tachocline.

The weakest part of our study is the necessity to introduce a smoothing (and
capping) of the effective diffusivity, via the parameter §. This is forced upon us by the
presence of instabilities of arbitrarily rapid growth rate, on the long time scale. These
would in practice be controlled by nonlinearity on the short time scale, which is not
present in our analysis, nor are we aware of any easy way in which to incorporate
it. The next step is to see whether full simulations of randomly forced vortices, with
nonlinearity, reproduce the results seen here and to see how far our assumptions of
weak external forcing, and consequent evolution of the profile on a long time scale,
may be relaxed. Also, because we cannot justify the form of the smoothing and
capping parameter §, we have not explored the very long time limit T — o0: we expect
mergers of steps in the two models to occur, over increasingly lengthy time scales,
leaving a step-less compact vortex in the Gaussian case. This would be interesting to
explore in a full numerical model.

A further direction of research would be in understanding the nature and role of the
external forcing ¢(¢) and its weight function w(p) in more realistic flows. For example,
in two-dimensional turbulence the irrotational flows of magnitude ¢ generated by other
vortices would vary on a slow time scale of order e¢, corresponding to a peak of w(p)
at the corresponding low frequencies. The effects we have discussed would then come
from the high-frequency tail of this peak: although w(p) would fall off, the dynamics
of the vortex tends to amplify the effects of frequencies p which interact with the
quasi-mode, i.e. via the resonant peak seen in figure 1(a), and pick out the frequencies
that give mixing and step formation at the periphery of the vortex on the slower &2t =1
time scale. This would again be best studied by means of numerical simulations.
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grateful to the Leverhulme Trust which supported A. D. Gilbert by a Leverhulme
Research Fellowship during 2007-2008, and to the EPSRC for research grant
EP/D032202/1, which supported M. R. Turner and annual visits of A. P. Bassom to
Exeter. We are pleased to acknowledge useful discussions and references from David
Dritschel, Stephane Le Dizes and John Thuburn.

Appendix A. Feedback on the mean profiles

Here we discuss the feedback from the fluctuations on the mean profiles, firstly in
the case in Balmforth et al. (2001), and then in the axisymmetric (initially Gaussian)
case. These require the calculation of F in (3.7) and (2.10), respectively. To handle
complex conjugation in the Laplace transform framework we proceed as follows; note
that we always keep the coordinates r or y and time ¢ real in our analysis. Given a
complex analytic function f(z) we define another one, f*(z), by

[@)=(f) (A1)

whereupon we have

_ o , 1 o
Fio= [ aem o, ro=—5 [ e Fen e
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where I goes from 400 to —oo below all the singularities of f *(p) and so is at the
outset the mirror image in the real axis of the contour I'.
For the random amplitude ¢(¢) of the forcing, we will need

=T ) — OOd OCd / ®0l i(pt—p't’) A3
G = [ a [ g wner . (A3)

which in the delta correlated case (2.5) is
@p)q () =ip—pH, (A4)

and in the exponential case (2.6) is

a? i a

mb):+a% p—p + 2(p' —mb +ia)(p —mb +ia)

<am?ww=(,_ (AS)
p

A.1. The model of Balmforth et al. (2001)
The feedback onto the mean profile in (3.7) is governed by (¢(y, )" (¢)) and we have

p')

(2022 (3, )" (r)—(1+a¢)/dp/ ap's v yM(p)M () a(pa (p). (A6)

by (2.11), (A2), (3.10) and (3.11). For our purposes we need to assume that M(p) is
analytic except for singularities S in a set bounded below the real axis. The distance
A = A(t) of S below the real axis, i.e. the width of the analyticity strip of M(p), will
generally decrease with t as the vorticity profile evolves, and the theory breaks down
if A(t) becomes zero: this is in fact what happens in the simulations, and why we
have to adopt a smoothing for the resulting large values of the diffusivity, modelling
nonlinear saturation of the mixing. Although we have to adopt this ad hoc procedure
for the simulations, we set out the theory with the assumption that the profile at the
given time 7 is stable, i.e. A(t)> 0.

Ensemble averaging and substituting the correlation function (A 4) for the delta
correlated case gives

_ e—ip—p) i
(200} = (1+0,0) [ dp [ dp MM (P). (A7)
r r p/m—=yp—p

Figure 8 depicts the contours I' and I'” in the complex plane together with the
singularities S of M(p) below the real axis, and singularities S* of M*(p’) above. We
close the I'" contour in the upper half plane using the exponential decay of e'”” there.
This encloses the pole p’= p (but no pole at my) and any other singularities S* of
M*(p'). We can ignore the effect of S* as singularities contribute only exponentially
decaying terms, decaying at least as e 2("”, that disappear on the fast time scale. In
other words we are implicitly averaging the right-hand side over the fast time scale,
although we have not put in angled brackets for reasons of readability. We are left
with

(2 0) = (1+00) [ dp e MM (). (AS)

We note that we in fact only require the imaginary part to form the flux F in (3.7).
To deal with this integral, we bring the contour down to lie along the real axis, except
at the pole p =my. On the real axis, since

M(p)M*(p) = IM(p)* for p real (A9)
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FIGURE 8. Schematic picture of contours I and I'" in the complex plane, discussed in
the text.

from (A1), we only obtain a real contribution to the integral, which we do not
need. Integrating anticlockwise around the semicircle above the pole p =my leaves
an imaginary contribution of in times the residue to give

(=2m) Im (¢ (v, 1)g" (1)) = (1 + 8,8)mm| M (my)|. (A 10)
This yields the flux and effective diffusivity
F=—k()(1+8,0), «(y)=m’M(my)?. (A11)

The calculation is similar for the exponential correlation function (2.6) with (A 5) and
introduces the factor w(p) into (3.15).

We present an alternative derivation of the result for «(y): we need this so that we
can proceed more swiftly in the axisymmetric case next. We start with the complex
conjugate version of (A 6), which is, after substituting the correlation function (A 4),

_ e—i(p—p)t i
(2 ply. 0 @) =140 [ dp [ dp' MM (), (A12)
r r p/m—=yp—=p
and close the p’ contour in the upper half plane. Now we pick up the residues from
the poles at p’= p and at p’ =my in figure 8; the result can be written as

(—2m)p(y, (1)) = (1 + 8,2) / dpw (1—1‘meﬂpmw>. (A13)

This integral has a removable singularity at p =my and the integration contour may
be moved to lie entirely along the real axis! However we remember that we only
require the imaginary part of this expression and that we are implicitly averaging over
time. Except within an O(t~!) neighbourhood of p =my the exponential averages to
zero to leave a quantity that is purely real and so can be discarded. The imaginary
part of the integral comes only from this neighbourhood and is at leading order

my+T

(=2m) Ity )" (1) = ~(1+ 0, NMEn [ ap SEEZID a1

where we have set ! < T <1 and reversed the contour direction. The integral here
is mm at leading order, and so the result is in agreement with (A 10).
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A.2. Axisymmetric flow

We now turn to the axisymmetric case in which the feedback on the mean profile in
(2.10) involves

(=21 (Y (r, " (r, 1)) = / dp [ dp'M(r, p)N"(r, p') ;/efi("*”/)’, (A15)
r r p—>p
for the delta correlated case. For each value of p we close the p’ contour. The
situation is depicted in figure 8, except that my is replaced by ma(r). From (2.15) with
p' =ma(s’) replacing p there is a pole singularity in N(r, p’) as now p’ varies, which
takes the form

N(r, p') = —=C(ma(r))mp(r)(ma(r) — p')™ + - (A16)

(using the definition of w(r) below (2.17)). After picking up the residues from the two
poles p’=p and p' =ma(r) of the p’ integration we are left with

(=2n) (Y (r, )" (r, 1)) = /de M(r, p) <N*(r, p)— ’W ei([’ma(r))t> .
(A17)

The argument then follows that for the model of Balmforth et al. (2001) after (A 13).
The singularity at p =ma(r) is removable and so we can deform the I" contour to the
real axis and reverse its direction. Away from p =ma(r) the exponential averages to
zero, and the product M(r, p)N*(r, p) is real (as ¥ is a real multiple of & in (2.12)). In
the O(¢t~!) neighbourhood of p =ma(r) only, there is a contribution to the imaginary
part, leaving

2nIm (Y (r, )" (r, t)) = nmPB(r)|C(ma(r)))>. (A 18)
The resulting flux can be written as
F = —«(r)d,, Kk(r)=m*r*C(ma(r))> (A 19)

Similarly, for advection of a passive scalar we instead solve
0,0 +imaoc = —imByY = —imPrq(t), (A 20)

where a(r) is the angular velocity of a given flow field and g =r"19,5 to obtain (2.20).

Appendix B. Numerical methods
The diffusion equation for the system in Balmforth et al. (2001)

3:¢ = 9,(k(y)2,), (B1)

with (3.11) and (3.15), was simulated numerically using a simply constructed code,
second order in space and time, in which the variable y is discretized with N points
y; in the interval [—Y, Y]. We use a corresponding grid of points p; =my; in the
interval [-mY, mY] where Y is chosen to be large enough to capture all the interesting
behaviour in ¢. We set up the initial conditions and add very weak random noise
to the vorticity values (at a level of 107%) to trigger instabilities (otherwise these are
generated by rounding or truncation error and so dependent on machine precision or
choice of grid and time step). The process is then as follows.
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We evaluate 9,¢ at points y; on the grid using finite differences and then L(p) at
the grid points p; using (3.12) with L,(p) written as

Y rd _— rd P
Lip) == [ ay PEIZRERI g /o
-y y—np/m

(B2)

Y+ p/m
Y —p/m|’

From this we compute «. at the gridpoints y; from (3.15) and (3.11). We cap and
smooth k. to give « according to (3.17).

The mean profile is then stepped in time using a modified Crank—Nicolson method.
Starting with the current field at time 7 =kAt¢, this method would usually involve
solving nonlinear equations for the future field ¢ and the diffusivity « at time # + At.
However as the diffusivity is a complicated functional of the field this is not practical.
Thus the method is combined with a predictor—corrector step: the present diffusivity
is held constant while the field alone is stepped from ¢ to ¢ + At¢. This gives an
estimate of the future field, from which an estimate of the future diffusivity may
be computed and finally used to take another Crank—Nicolson step for the field
from ¢ to t+ + At. This process can be iterated, but tests indicate that two steps
(one to estimate the diffusivity and one to step the field) are sufficient. In figure 5,
parameter values used are, in figure 5(a) (N, Y, At)= (8000, 10, 5 x 10~%), figure 5(b)
(N, Y, At)=(16000, 10, 2 x 10~*) and figure 5(c, d, e) (N, Y, At)=(32000, 10, 10~*%)
and for figure 6, (N, Y, At)=(32000, 6, 2.5 x 1075).

For the full, Gaussian problem, a similarly structured code was written to time step
the diffusion equation

3w = r19,(re(r)d. @), (B3)
with « given in (2.19) and C(p) in (2.12)—(2.17). The code starts with @ known on
a radial grid r; with N points from 0 to R. The quantities p; =a(r;) and B(r;) are
calculated using a cubic spline fit while for each grid point r; the code computes
C(p;) as follows. We let & be a small positive numerical parameter and interpolate
the relevant functions onto a finer grid with M points, M > N . The ODE (2.12) is
integrated from r =h using ¥(h, p)=h" and 9,¥(h, p)=mh™"' to r=r; — h using
a fourth order Runge—Kutta scheme. The solution is then stepped over the critical
point, from r; — h to r; + h, using the jump conditions from (2.16), (2.17), namely,

W15 =0, [8,¥]F =ixulr;)¥(r;) (B4)

(in our case x = —m) and finally integrated out to R where ¥ oc r™. The solution is
then divided throughout by the (complex) constant of proportionality so as to satisfy
(2.13) and the resulting value of ¥ at r =r; is then just C(p;). Note that a check on
this part of the code exists: solutions obtained for a Gaussian mean profile are given
in figure 3 of Le Dizes (2000).

Once the code has C(p;) for each radius r;, it may evaluate «(r;), smooth it and
step the mean profile @ by applying the modified Crank—Nicolson scheme used for
the model of Balmforth et al. (2001), with a no-flux condition for the vorticity at the
origin and a zero vorticity boundary condition at r = R. For the simulations shown in
figures 2 and 3, parameter values used are (N, M, R, h)=(4000, 24N, 10, R/M) and
figures 2(a) and 3(a) At =10"* and figures 2(b, ¢) and 3(b, ¢) 1073,

Appendix C. Instability in the model of Balmforth et al. (2001)

We initially ran the code for the model with no smoothing § =0 and found that
the results depend strongly on numerical method, time-step and grid resolution. We
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were led to consider the evolution of weak, small scale perturbations on a profile and
to what extent these may be amplified or suppressed by their effect on «. Consider a
smooth mean profile ¢(y) which is perturbed to

Z(y) + AZ(y) = (y) + psinky, (C1

with u <1 and k> 1. We linearize, retaining only terms of order u, and it is
convenient to use A to denote the change in a quantity to this order. The perturbation
above will satisfy

9 AT = Ak 35 + K3y AL 4 (3y Ak)(1 + 8,) + (3,6)(3y AL). (C2)
Now we have from (3.12),
AL.(p) =mnuksinkp/m, ALi(p)=—nukcoskp/m, (C3)
and also with p =my from (3.15)
Ak(y) = —m?|M(p)*w(p)[=2(p — Li(p)) AL:(p) + 2Li(p) ALi(p)], (C4

which amounts to
Ax(y) = 2npkm?®|M(my)|*w(my)[(my — Li(my)) sinky + Li(my) cosky]. ~ (C5)

Now consider the four terms on the right-hand side of (C2). The first term, say
(C2-1), and the fourth term (C2-iv) are of order k£ only, and can be neglected in
comparison with terms of order k2. The second term (C 2-ii) is

K3y AL = —uk’k sinky, (C6)

which is the usual diffusion of the perturbation, while the third term (C 2-iii) involves
the leading, order k> quantity

3y Ak =~ 2muk?m?| M (my)|*w(my)[(my — L.(my)) cosky — Li(my) sinky]. (C7)

Now plainly the cosky term here gives wave motion, but the sinky term can give
growth or decay. Combining terms from (C 2-ii) and (C 2-iii) gives the (real) growth
rate of the mode as

y = —k*k — 2nk*m?|M (my)[*w(my)Li(my)(1 + 3,0). (C8)

Using the definition of « from (3.15) and L; from (3.12), this can finally be written in
the form
2.2
y(3) = K1 my)? = (my — Lo(my)?. (©9)
m2w(my)

Thus we have a highly unstable behaviour, with wavenumber k possessing an order
k* growth rate if this quantity is positive, i.e. if L; is sufficiently large. For the initial
condition of a constant gradient { =0 we have L, =0, L; = —, giving formula (3.18)
with amplification of modes in the range |y| <m/m. Note that while the limitations
of such a local theory of instability are well known, the calculation is instructive as a
simple means to understand the behaviour seen numerically.
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